Nanoelectromechanical contact switches.
نویسندگان
چکیده
Nanoelectromechanical (NEM) switches are similar to conventional semiconductor switches in that they can be used as relays, transistors, logic devices and sensors. However, the operating principles of NEM switches and semiconductor switches are fundamentally different. These differences give NEM switches an advantage over semiconductor switches in some applications--for example, NEM switches perform much better in extreme environments--but semiconductor switches benefit from a much superior manufacturing infrastructure. Here we review the potential of NEM-switch technologies to complement or selectively replace conventional complementary metal-oxide semiconductor technology, and identify the challenges involved in the large-scale manufacture of a representative set of NEM-based devices.
منابع مشابه
Performance Limits of Nanoelectromechanical Switches (NEMS)-Based Adiabatic Logic Circuits
This paper qualitatively explores the performance limits, i.e., energy vs. frequency, of adiabatic logic circuits based on nanoelectromechanical (NEM) switches. It is shown that the contact resistance and the electro-mechanical switching behavior of the NEM switches dictate the performance of such circuits. Simplified analytical expressions are derived based on a 1-dimensional reduced order mod...
متن کاملCarbon-carbon contacts for robust nanoelectromechanical switches.
Nanoelectromechanical devices exhibiting dramatically improved robustness through novel material selection are demonstrated. A unique combination of carbon nanotube active elements and conductive diamond-like carbon contact electrodes results in reliable switching performance not found in devices with ubiquitously-used metal thin film electrodes. This in turn represents a viable means to improv...
متن کاملLow voltage nanoelectromechanical switches based on silicon carbide nanowires.
We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths...
متن کاملSwitch on, switch off: stiction in nanoelectromechanical switches.
We present a theoretical investigation of stiction in nanoscale electromechanical contact switches. We develop a mathematical model to describe the deflection of a cantilever beam in response to both electrostatic and van der Waals forces. Particular focus is given to the question of whether adhesive van der Waals forces cause the cantilever to remain in the 'ON' state even when the electrostat...
متن کاملA simple method for analysing the deformation of nanoelectromechanical switches based on carbon nanotubes
This paper developed an effective multiscale method for analysing the deformation of NanoElectroMechanical (NEM) switches based on carbon nanotubes. The switches were simplified to beam systems with loads calculated from three-coupled energy domains: the electrostatic energy domain, the elastostatic energy domain, and the van der Waals energy domain. A meshless formulation was then used to disc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature nanotechnology
دوره 7 5 شماره
صفحات -
تاریخ انتشار 2012